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Abstract

Spearman’s' basic idea was that the mutual correlation of variables
(such as test scores) might be explained by their common dependence
on a latent variable, which he called a factor. Such factors were to
be uncovered, therefore, by appropriate numerical analysis of the cor-
relation matrix. Spearman was able to show that the presence of an
underlying factor would be revealed by a particular pattern in the cor-
relation matrix. Although others extended this idea to several factors,
the analysis of the correlation matrix on these lines dominated factor
analysis for the next half century.

The second face is most easily seen in Lawley and Maxwell’s Fac-
tor Analysis as a Statistical Method which first appeared in 1963 but
it would be difficult to identify its precise origin. It was part of a gen-
eral shift in statistics to the use of probability models which became
obvious around the 1950s. The starting point was now a linear model
in which the observed variables were expressed as linear functions of
the factors and random ’errors’. This enabled the theory of statistical
inference to be brought to bear on estimation and hypothesis testing
using the likelihood function. A subtle change of focus from the cor-
relation matrix to the covariance matrix accompanied this move and
paved the way for covariance structure analysis.

The third face went unrecognized for nearly half a century but it
was already present in Lazarsfeld’s work on latent structure analysis.
Spearman’s original insight here re-surfaced in the observation that
association between categorical variables might be explained by latent

!Spearman’s contribution to the origins of factor analysis was described in Bartholomew
(1995). That paper has much in common with this but here the focus is not primarily on
Spearman



variations in continuous or categorical 'factors’. In fact, the difference
between factor and latent structure analysis is more apparent than
real. The two can be brought together in a factor analysis framework
by supposing that the normal distribution of classical factor analysis
is replaced by a member of the one-parameter exponential family in
which the canonical parameter, rather than the mean, is linear in the
factors and errors.

Factor analysis, in its maturity, thus emerges as one method of
studying the inter-dependence structure of random variables. It dif-
fers from recent work on graphical models, multivariate dependencies
etc., principally by introducing latent variables. Spearman was handi-
capped by the limits of the statistical and computational technology a
century ago but, even more, by his narrow focus on measuring intelli-
gence. Such is the fate of truly original pioneers. Genuinely new ideas
are rare in any field and Spearman should be honoured for one which
virtually created psychometrics and, eventually, had much wider ef-
fects.

1 Origins

1.1 Spearman’s idea

The origin of factor analysis is to be found in Spearman [9] but the details
are tantalizingly brief. The paper is a very long one—91 pages—but only
a small part, notably the table on page 276, is concerned with something
recognizable today as factor analysis and then almost as a side issue. The
focus is more on the question of whether the common factor underlying a
variety of branches of intellectual activity is the same as that which underlies
tests of sensory discrimination. Thus, on page 272, Spearman reaches the
conclusion:’On the whole then, we reach the profoundly important conclusion
that there really exists a something that we may provisionally term ”General
Sensory Discrimination” and similarly a ”General Intelligence”, and further
that the functional correspondence between these two is not appreciably less
than absolute.’

Of more immediate relevance to factor analysis, he states what he calls
”our general theorem” which is Whatever branches of intellectual activity are
at all disstmilar, then their correlations with one another appear wholly due
to their being all variants wholly saturated with some common fundamental



Function (or group of Functions). He distinguishes this central Function
from ”the specific function (which) seems in every instance new and wholly
different from that in all the others”. These ideas are translated into numbers
in the table on page 271 with only the sketchiest justification for the calcu-
lations involved. Nevertheless it is a table of factor loadings (correlations of
the test scores with the factor, general intelligence) and communalities. It
is, then, the first example of a factor analysis.

The simplest way to justify this analysis, (according to the remark at the
bottom of page (ii) of the Appendix in Spearman 1927) is to appeal to the
theory of partial correlation. This had been introduced by Yule [13] in some
detail. The essence of what Spearman needed is contained in the formula
for the partial correlation between two variables, ¢ and j say, given a third
variable which following Spearman we call G. Thus
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If the correlation between ¢ and j is wholly explained by their common de-
pendence on G then r;; ¢ must be zero. This implies that
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If the correlation matrix R = {r;;} can be represented in this way then we
have evidence for an underlying common factor. Spearman found this to be
so and gave estimates of {r;5} in his table on page 276.

In the beginning, factor analysis consisted in seeing whether the corre-
lation matrix had the required structure. In particular, whether the 'tetrad
differences’ given by r;;7p, — 73,75 Were all zero. These are equivalent to (2)
and also to S

T hatic e (i 4] #h). (3)
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This ratio does not depend on ¢ and hence is the same for all rows of the
table (excluding the diagonal elements). A similar argument applies to the
columns because the matrix is symmetrical.

At this basic level, we see that the correlation matrix is the key to un-
earthing a common factor. Later it was shown that if there were two or
more (independent) underlying factors, the correlation matrix would have a
structure of the form

Tij = Zq: Aib Ajn, (i # J). (4)
h=1



The first face of factor analysis thus starts from the correlation matrix. What
can be learnt about the factor structure is, therefore, contained in that ma-
trix. Early factor analysis was dominated by the study of correlation matri-
ces and mathematicians with skills in this field were enlisted to help (see, for
example, references to Ledermann on p. 386 of Thomson 1950).

There is more to this than meets the eye because a correlation coefficient
is a measure of linear correlation. The decision to use product moment
correlation, therefore, implies an assumption that item test scores are linearly
related to any underlying factors. Although implicit from the beginning it
only became the central idea in the second phase of factor analysis’ history—
its second face. Before moving on to that we digress to notice that the
structure (3) does not imply that the observed correlations were generated
from a common dependence on a single factor. There is at least one other
explanation, associated with the name of Godfrey Thomson.

1.2 Thomson’s Alternative Model

It is common in statistics to find that more than one model makes exactly
the same observational predictions. We may describe this as a lack of 'model
identification’. Spearman’s one-factor model, which provided a good fit to
many data sets, supposed that individuals varied along a scale of what we will
continue to call G. This led, naturally, to the supposition that this underlying
factor was 'real’. Thomson[12] pointed out that there was another model,
capable of describing the data equally well, which did not involve such a
common factor. At most, only one of these models could describe physical
reality and hence there was no certain empirical evidence for the reality of
Spearman’s factor.

This matter was much debated in the psychological literature in the 1920s
and, for good reasons, Spearman’s model came out on top. Thomson’s model
is largely forgotten though it is worth noting that Mackintosh (1998) has re-
cently pointed out that it corresponds, in part at least, with contemporary
ideas on brain function. It is, therefore, worth taking another look at Thom-
son’s ’sampling model’. The original debate was somewhat clouded by the
lack of a clear notion of a random variable. Thomson, himself, used simple
examples based on dice and such like to get the idea across but this seems
to have engendered misunderstanding and comprehension in equal measure!
The nearest and clearest exposition seems to be due to Dodd [3]with whom
Thomson [12] (p.43) said he agreed on a great deal if not on everything.
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The following account, in modern dress, is very similar to Dodd’s treatment
though it is not the most general form possible. However, it is sufficient
to make the point that it is, empirically, indistinguishable from Spearman’s
one-factor model.

Suppose the brain contains N ’bonds’ which may be called into play when
test items are attempted. (/N is thought of as ’large’ but this is not necessary
for the argument.) Some items will be more demanding than others and so
more bonds will be used in their solution. The correlations between two test
scores are supposed to result from the use of some bonds being common to
both items. The term ’sampling theory model’ arises from the fact that the
bonds used by any item are supposed to be selected at random from the N
available.

Assume that item i requires Np; (assumed to be an integer) bonds. The
contribution which bond ¢ makes to the score on that item, z;, is a random
variable e;. The score may thus be expressed as

T; = Q;1€; + Q262 + ... + G;NEN (’L = 1, 2, . n) (5)

or

x = Ae

where n is the number of variables and the coefficients {a;;} are indicator
variables taking the value 1 if the bond is selected and 0 otherwise. The as
are, therefore, also random variables with joint distribution determined by
the method of sampling, It is convenient to suppose that the es are mutually
independent and have zero means but we allow their variances to differ with

var(e;) = af (j=1,2,..., N). We now have to find the structure of the
covariance (or correlation) matrix. Given these assumptions
E(z;) = 0 (t=1,2,...,n)

E(ZL‘ZZL‘]) = EE(ZEZ‘ZL'j|aZ‘, aj)

N N
= F Z Z CLihCijE(eh €k)

h=1k=1
N

= E> anajno; (i,7=1,2,...,N  i#j).
h=1

If we assume that successive samplings are independent and that all bonds
are equally likely to be selected then

E(aihajh) = sz ij.
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Hence,

N
E(x;z;) = N?p; p; Z or = cov(z;, ;) (1, 7=1,2, ..., n).
h=1

When i = 7,

N N N
var(z;) = Y Eagjo; =Y Eapop = Np; » o7, (i=1,2,...,n).

h=1 h=1 h=1
Hence
corr(z;, ;) = \/Pi D; (G, 7=1,2, ..., i #j).

This has exactly the same form as the correlation matrix of Spearman’s one-
factor model. Hence the two are not empirically distinguishable.

The parameters {,/p;} in Thomson’s model correspond to the factor load-
ings {7z} in Spearman’s model. Estimates of the factor loadings can, there-
fore, be translated into estimates of the proportions of bonds which are se-
lected in attempting an item, by the fact that p; = r%, (i = 1,2, ..., n).
Typical values of ;5 are in the range (0.5-1) so this would imply quite a high
proportion of bonds being used.

Spearman criticized the sampling theory model on the grounds that it al-
lowed no individual differences. Thomson denied this but he and Spearman
may have been at cross purposes. Thomson pointed out that the sampling
of bonds would be a separate operation for each individual and thus that the
selection would not usually be the same for any two individuals. However,
to estimate the correlations it would be necessary to suppose that they had
the same expectation for all individuals. One cannot estimate a correlation
from a single pair of test scores from one individual.Only by assuming that
the correlations are the same for every individual does one have the replica-
tion necessary to make an estimate. One has to assume, therefore, that the
method of sampling and the parameters {p;} (and N) are the same for all
individuals.

There is an inherent implausibility about assuming homogeneity in any
human population even if one does not wish to attribute any heterogeneity to
differences in innate ability. Whether or not the assumption of a fixed N—
the number of bonds—is plausible or whether it is sensible to suppose that
the number of bonds called into play by a given item is a fixed number is also
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questionable. Perhaps the fact that Spearman’s model could be extended to
several factors and, in that form, successfully fitted to a very wide range of
data gave it the advantage.

Thomson, himself, conceded that Spearman went a long way to meet his
objections but his alternative model is worth recalling as a reminder that
finding a good fitting model is not the same as finding the real mechanism
underlying the data.

2 Factor Analysis: Linear Models

The second face of factor analysis starts, not with a correlation matrix, but
with a model. The use of models in statistics, on a regular basis, seems to
date from the 1950s. A statistical model is a statement about the distribution
of a set of random variables. A simple linear regression model, for example,
says that the dependent variable y is normally distributed with mean a + bz
and variance o2, where a and b are unknown constants and z is an observable
variable. In the case of factor analysis the move to a model-based approach
was gradual. The rudimentary idea was contained in the idea that an ob-
served test score was composed of a common part and a specific part. This
is made explicit, for example, in Spearman and Jones [11] (p.37) but was im-
plicit, as we have already noted, in the use of product moment correlations.
Hotelling’s [4] introduction of principal components analysis, which was con-
cerned with expressing a set of variables (x1, xa, ..., x,) as linear function of
p orthogonal variables (yi, ya, ..., y,) doubtless encouraged factor analysts
to think of factor analysis in similar terms. However, it was in Lawley and
Maxwell [5] that a linear model was made the starting point for developing
the theory in a systematic way. Actually, this formulation was incomplete
but, in its essentials, it still holds sway today. In modern notation Lawley
and Maxwell supposed that

i = Xy + XioYa + .+ Nigyg € (i=1,2,...,p) (6)

In this equation the As are constants and the xs, ys and es are random
variables. Thus if one imagines that the y-values for item ¢ are drawn at
random from some distribution and the es are drawn similarly, then the
model postulates that, if they are combined according to (6), the resulting
random variable will be z;. It is usually assumed that the ys are independent
with normal distribution and (without loss of generality) unit variances; e; is
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assumed to be normal with variance ;. Lawley and Maxwell [5] state, like
many since, that all the random variables in (6) may be assumed to have
zero means without any loss of generality. This is not so. It is tantamount to
assuming that the mean of z; is known. In practice this is seldom the case.
It is more accurate to insert an unknown mean p; on the right hand side of
(6). We then have the standard linear normal factor model in use today. The
omission of p; does not have serious consequences but its inclusion makes for
clarity.

Equations in random variables, like (6), need to be thought about very
carefully. Much of the confusion which has surrounded the topic of factor
scores stems from failing to distinguish between random variables and math-
ematical variables (see later).

An alternative way of writing the model, which is less prone to misunder-
standing is to write it in terms of probability distributions as in Bartholomew
and Knott [1]. thus we suppose

q
Tilyye - Yy —~ N (Mi +Z AijYi, %’) (i=1,2,...,p) (7)

o~ NO) (=120 ®)

where y’s are mutually independent. Equation(7) is a regression model for
x; in terms of regressor variables y1, v, ..., y,. If the ys were known, factor
analysis could be handled with the framework of regression theory. As it is,
the ys are random variables and so their joint distribution must be specified,
as in equation(8).

Once we have a probability model, as specified in (7), the whole field of in-
ferential statistics is available to us. For example, the parameters {y;}, {\i;}
and {#;} can be estimated by maximum likelihood. Hypotheses can be tested
about the values of those parameters and so on. What can be known about
any y, once the xs have been observed, is contained in the posterior distri-
bution of y given x1, 22, ..., Tp.

It is worth pausing to ask the justification for regarding this as another
way of looking at Spearman’s factor analysis. The answer, of course, is
that the correlation structure to which it leads is the same. If, for exam-
ple, one writes down the likelihood function it turns out that the sample

means, T, T2, ..., £, and the sample covariance matrix 3 are sufficient for
the parameters. In particular, the covariance matrix 3 has the form
YX=AAN+T (9)



which is precisely what the correlation approach (4) leads to. If there is one
factor, for example, the theoretical covariance between z; and z; is

COV((EZ‘ l'j) = )\z )\j (Z = ])

and it can easily be shown that ); is the correlation between y and z;. The
correlation between x; and x; is of the same form.

As in standard linear regression, much can be achieved without the as-
sumptions of normality. The covariance structure has the same form if the
distributional assumptions are dropped.

Once factor analysis is viewed in this way it is easier to pose the factor
scores problem. This is concerned with predictions, or estimating the un-
observed values of y to be associated with and x. The problem had been
recognized from the beginning, of course. Spearman had proposed an ad
hoc method (Spearman [?]; Spearman and Jones [11] 1950). This involved
obtaining p estimates of y by putting e; = 0 in (6) and then taking an av-
erage. Thomson [12] found the best linear regression of y on x, noting that
this did not require knowledge of the individual values of the ys. For obvious
reasons, these became known as regression scores. Other types of scores were
proposed using various criteria but the subject became confused by attempts
to interpret the linear equations of (6 or 7), by analogy with principal com-
ponents analysis, as though they were equations in mathematical variables.
The argument would usually go as follows.

If ¢ = p and if ¢; = 0 for all ¢ the equations of (6) are formally the same
as in principal components analysis. The zs and ys are not then random
variables but represent real numbers. The equations may then be invoked to
give y in terms of x. If ¢ < p, the argument goes, there are more unknowns
than equations: p es and ¢ ys gives p + ¢ unknowns and only p equations.
The factors are then said to be indeterminate. Thomson’s regression method
can the be regarded as one possible way of getting a ’best fit’ solution to the
equations. This operation changes the random variables into mathematical
variables and thus changes the question being asked.

It is clear that, once the model is formulated in terms of probability distri-
butions, as in (7), that the question which the model is capable of answering
is :what is the distribution of y given x? The answer follows inexorably
from the laws of probability and is given by the posterior distribution of y
given x. Point predictions of y can then be found as measures of location
of that distribution. Posterior measures of spread then give an indication of
the imprecision of those predictions.



The model-based approach thus enables us to provide rigorous methods
for answering the traditional questions addressed by factor analysis.

3 The Third Face of Factor Analysis

It is a curious fact of statistical history that there has been a strong focus
on methods for continuous data. Regression and correlation analysis and
then the analysis of variance have, for the most part, pre-supposed that the
variables involved were continuous. Other multivariate methods, introduced
along the way, such as discriminant analysis, principal components analysis
and canonical correlation fall into the same mould. It is interesting to spec-
ulate how far this can be attributed to the fact that the data on crop yields
which confronted Sir Ronald Fisher at Rothamsted were continuous. It is un-
surprising that factor analysis should have started from the same supposition
and concentrated on correlation.

Of course, these methods have been widely used on data which were
not continuous. Coarsely grouped variables, ordered categorical variables—
even binary variables—have been grist to the analysts’ mill. Indeed, much
ingenuity has been exercised to treat categorical data as if it were continuous
by introducing, for example, pseudo-correlation coefficients of one sort or
another.

In practice, and especially in the social sciences, much of the data we
encounter is not continuous but categorical. Sometimes the categories are
ordered and sometimes not. Often they are binary, being derived from
true/false or yes/no questions in sample surveys. In fact, sample surveys
are a common source of data for which continuous methods are not appro-
priate. Matters are often made more difficult by the fact that a survey is
likely to lead to a mixture of types of variable thus calling for hybrid methods
capable of coping with all sorts of variable.

In turning to the third face of factor analysis we are looking below the
surface to identify the essential questions which factor analysis is intended
to answer.

In factor analysis we are asking whether the dependencies among a set
of variables can be explained by their common dependence on one, or more,
unobserved latent variables (or factors). There is nothing in this statement
which refers to the level of measurement of the variables involved. If, there-
fore, we formulate the problem in sufficiently general terms we should have a

10



general enough framework to include variables of all sorts. The essential ele-
ments of the problem are the inter-dependence of a set of observable variables
and the notion of conditional independence.

Suppose we have p observable random variables x' = (z1, 22, ..., x,)
with joint probability distribution f(x). This may be a joint probability
density if the xs are all continuous, a joint probability function if they are
all discrete; otherwise it is a mixed function.

The question is: Do there exist factors y1, o, ..., y, (= ¥’) such that the
xs are conditionally independent? That is, can we find a ¢ and variables
Y1, Y2, - - -, Yq such that

f(xly) = H Faily). (10)

In the case of the normal linear model this question is answered by finding
a ¢ such that an adequate fit is obtained with the linear model. With other
kinds of variable (non-normal as well as as non-continuous) different methods
will be required but, conceptually, the problem is the same.

This insight seems to have escaped factor analysts until quite recently.
In fact, this more general way of looking at the problem had an indepen-
dent origin in what seemed to be a quite different problem—in sociology,
not psychology. This disciplinary divide probably accentuated the gulf and
prolonged the separate existence of a distinct body of theory.

Lazarsfeld was the pioneer of this distinct kind of ’factor analysis’ and
he called it latent structure analysis. See, for example, [6]. Essentially, he
allowed one or both of the sets of variables x and y to be categorical. Factor
analysis was thus excluded because both x and y are then continuous. In
retrospect, this seems to be a curious development but, although Lazarsfeld
recognized that there were similarities with factor analysis he thought that
the differences were more significant. The differences were, in fact, in matters
of computation and in the appearance of the formulae. These things are not
fundamental. The similarities were in the nature of the questions asked. This
family likeness becomes more apparent when we adopt a sufficiently general
notation as in (10) above.

The closeness of latent structure analysis and factor analysis is even more
obvious when we discover that all the variants in common use can be sub-
sumed under a linear model called, in Bartholomew and Knott (1999), The
General Linear Latent Variable Model (GLLVM). This may be seen as a
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generalization of the normal linear factor model in almost exactly the same
way as the generalized linear model generalizes the general linear model of
statistics. In the normal linear factor model it is assumed that each z; has
a linear regression on the factors with normal residuals. All other standard
latent structure models emerge as special cases if we suppose that each z;
comes from a one-parameter exponential family distribution. In this case,
it is the canonical parameter which is a linear function of the factors rather
than the mean. In the standard linear model there is nothing which requires
the regression variables (the factors in a factor model) to be continuous.
Categorical variables can be represented by indicator variables, or vectors.
Viewed in this way, factor analysis is simply the attempt to explain the inter-
dependence of a set of variables in terms of their dependence on a small set
of underlying variables which may be categorical or continuous.

There is one important class of problem which does not fit nearly into
this framework.This occurs when some of the variables, the manifest vari-
ables in particular, are ordered categorical. These can be accommodated in
one of two ways. One is to put order constraints on the parameters of the
model in a way calculated to reflect the fact that the "higher’ effect on the
response probability increases monotonically as we move through the cate-
gories. The other way is to regard the ordered categories as a grouped form
of a continuous variables. The latter is often the most realistic but the choice,
ideally, should be guided by what gives rise to the ordering in the first place.
For a fuller discussion of this matter see Bartholomew, Steele, Moustaki and
Galbraith [2] especially Chapter 8.

The unifying effect of adopting this way of looking at factor analysis has
some interesting consequences for dealing with the problem of factor scores.
(A first look at this problem from the point of view of the linear model was
given in Section 2.) The problem, we recall, was to locate an individual in the
factor space on the basis of the observed value of their x. Within the general
framework, the way we do this is obvious. If x and y are random variables
then, when x is known, all of the information about y is conveyed by its
posterior distribution f(y|x). This simple fact shows that there is no single
value of y to be associated with any x. There is a probability distribution
over the y-space and any ’score’ must, therefore, be a summary measure of
the distribution. Measures of location are the natural measures to use. A
posterior measure of dispersion is then appropriate to show how imprecise
the score is—how reliable, in other language.

Is is curious how, in the latent structure tradition, this is exactly the
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approach which has been used. To take the simplest case, suppose that we
have fitted a model in which a single y is supposed to be binary—meaning
that there are just two latent classes. The posterior distribution of y is thus
a two-point distribution. If, without loss of generality, we take the two values
of y to be 0 and 1, the expectation, for example, is F(y|x) = Pr{y = 1|x).
A posteriori, therefore, we calculate the probability that the individual falls
into category 1.

In the factor model, by contrast, this route has not been followed, though
Thomson’s 'regression’ estimate is a distribution-free implementation of the
same idea.

4 A Broader Perspective

The unified approach seen in the third face of factor analysis does more than
simplify our understanding and make for economy of thought It also gives
a deeper insight into the nature of certain familiar features of individual
techniques.

We have seen that the existence of ¢ continuous factors yi, y2, ..., Y4
means that the joint distribution can be expressed in the form

769 = [ T17teily) 7ty d ()

The xs may be continuous or categorical. It is immediately clear that this
has the form of a mixture with f(y) as the mixing distribution. Mixtures
occur in many branches of statistics and a great deal is known about them
and their properties.

A second important feature is that any transformation y — z in (11)
leaves f(x) unchanged because if is merely a change of variable in the integral.
There are thus infinitely many pairs { f(y), f(z;|y)} leading to the same f(x).
Since the only distribution we can directly learn about is f(x) there is no
empirical way of distinguishing among this infinite set of possible models.
In practice, of course, we narrow the set down by fixing f(y) or requiring
f(x;]y) to belong to some convenient family but these choices are, essentially
, arbitrary. There is thus an inevitable indeterminacy in all factor models.

A special case of this indeterminacy is very familiar in the linear factor
model where it lies behind the concept of rotation. In that case, the trans-
formation to z = My where M is an orthogonal matrix leads to the same
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covariance matrix and hence, (under the usual normal assumptions) to the
same joint distribution. The general formulation shows this to be a special
case of a more fundamental indeterminacy.

Rotation by a linear transformation is not peculiar to the linear factor
model. All members of the class of GLLVM’s with continuous ’s have the
canonical parameter as a linear combination of the factors. Thus if

0; = cio + anyr + il + ...+ Qg (12)
or
0=Ay, say,
then
=AM 'z (13)

where z = My. The zs have the same independent standard normal distri-
butions as the ys but their coefficients are transformed from A to AM™1.
The two versions of the model are thus indistinguishable because the distri-
bution f(x) is unaffected. This is the usual account of rotation but it is now
revealed as characteristic of a much wider class of models.

The indistinguishability of models extends to what we might term 'near-
indistinguishability” which is just as important practically. The best known
example, perhaps, has been known for some time but has been investigated
most thoroughly by Molenaar and von Eye [8]. Thus it is known that the
covariance structure of the linear factor model is the same as that of a latent
profile model with one more latent class than there are factors. On the
basis of the covariance matrix alone one cannot distinguish between the two
models. Only by looking at other aspects of the joint distribution would it,
in principle, be possible to discriminate. The full practical implication of
this result for the vast number of factor analyses that have been carried out
seems to have been scarcely noticed.

A further example is provided by the latent class model with two classes
and the latent trait model. Empirically it is very difficult to distinguish
these, yet they say radically different things about the prior distribution of
the latent variable. In the former case it is a two-point distribution and,
in the latter, it is usually taken as a standard normal distribution. Further
discussion and an example will be found in Bartholomew et al. (2002, section
9.4)

Another way of characterising results of this kind is to say, as the title of
Molenaar and von Eye’s paper implies, that latent variables are very poorly
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determined. This result has far-reaching implications for all work on the
relationships among latent variables.

A final result, with practical implications, takes us back to the factor score
question. For the family of models of the GLLVM class, the joint distribution
of x can be expressed in the form

f(x) = / F(X]y) f(y) dy (14)

where X is a g-vector with elements of the form
p
i=1

This shows that f(x) depends on x only through ¢ linear combinations of the
xs. Any factor score, for any member of this family, should therefore be a
function of these ’sufficient’ statistics (as they are called in Bartholomew and
Knott 1999).

Many purely empirical attempts at scaling have proposed to use linear
combinations of the observed scores—whether in educational testing or other
fields. It is interesting to observe that the third face of factor analysis provides
theoretical under- pinning for the use of linear combinations.

In a sense, therefore, we have come full circle to a point where we see that
Spearman’s original attempt to find a method of constructing a measure of
general intelligence eventually leads to the same kind of measure as his more
empirically minded successors proposed on intuitive grounds.
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